Lesson 16. Multivariable Functions

1 This lesson...

• How do functions of many variables work? What do they look like graphically?

2 Functions of 2 variables

- A function *f* of 2 variables
 - takes an ordered pair (x, y) of real numbers as input
 - outputs a unique real number f(x, y)
- The **domain** D of f is the set of allowable inputs to f
 - If *f* is given by a formula and its domain is not explicitly specified, then the domain of *f* is the set of all (x, y) for which the formula is well-defined
- The **range** of *f* is the set of values that *f* takes on

Example 1. Let
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$

- a. What is f(3, 2)?
- b. What is the domain of f?

Example 2. In 1928, using economic data published by the government, Charles Cobb and Paul Douglas modeled production output P(L, K) as a function of the amount of labor involved *L* and the amount of capital invested *K*:

$$P(L,K) = 1.01L^{0.75}K^{0.25}$$

This function (in a more general form) is known as the *Cobb-Douglas production function*.

Find P(120, 20). In words, what does P(120, 20) mean?

• Functions are not always represented by explicit formulas, as the next example shows

Example 3. The *wind-chill index* W(T, v) is a subjective temperature that is a function of the <u>actual</u> temperature *T* (in °C) and wind speed *v* (in km/h), as given by the table below:

	Wind speed (km/h)											
Actual temperature (°C)	T	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

a. Find W(-15, 40). In words, what does W(-15, 40) mean?

b. Define the function h(T) = W(T, 40). Describe the behavior of *h*.

3 Functions of *n* variables

• A function *f* of *n* variables

- takes an ordered tuple (x_1, \ldots, x_n) of real numbers as input
- outputs a unique real number $f(x_1, \ldots, x_n)$

Example 4. Anteater-Bugs produces *n* types of beers. It costs c_i to produce one bottle of type *i* beer (i = 1, ..., n). Let $C(x_1, x_2, ..., x_n)$ be the total cost of producing x_1 bottles of type 1 beer, x_2 bottles of type 2 beer, ..., and x_n bottles of type *n* beer.

Write a formula for $C(x_1, x_2, \ldots, x_n)$.

4 Graphs of functions in 2 variables

- Let *f* be a function of 2 variables with domain *D*
- The graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D

Example 5. Sketch the graph of $f(x, y) = x^2 + 2y^2 + 1$ by first drawing its traces for z = -1, 0, 1, 2, 3, 4.

